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Abstract.- In this paper we present an alternative speech 
prediction system. The new approach consists in 
predicting from a vector of non-consecutive samples, 
being T the distance between samples. The dimension of 
the vector d and the distance T have been estimated 
following the algorithms described in [Abarbanel 98].  
The results prove that the suggested system achieves 
similar results to that of a conventional one but with a 
computational load much lower. Furthermore, T can be 
selected in the neighbourhood of its optimal value 
without loss of performance. 
 

I. INTRODUCTION 

 
Linear prediction has been one of most preponderant 
tools in the field of speech processing during the last 
three decades; nevertheless, it is well known that 
speech production involves notable nonlinear 
processes [Kubin 95]. During the last few years there 
have been several attempts to turn towards nonlinear 
prediction [Tishby 90, Townshend 91, Wu 94, 
Kumar 97], but the results (with some exception) 
have not been very encouraging: the nonlinear models 
require a high computational effort compared to linear 
ones while the corresponding improvement is not so 
much. In other words, as long as nonlinear modeling 
does not significantly improve it is not worthwhile. 
 
From our point view, the most relevant contribution to 
the field of nonlinear speech processing sets out the 
problem of speech analysis from the dynamical system 
theory [Kubin 95], trying to learn the signal structure. 
In this framework, the speech signal is seen as 
generated by a nonlinear dynamical system defined by 
a (low-dimensional) state-space vector and its 
evolution through a state space.  
 
Unfortunately, the actual state-vector only can be 
inferred for quite simple systems, and as anyone can 
imagine, the dynamical system underlying the speech 
production process is very complex. Nevertheless, as 
established by the "embedding theorem" [Ott 93], it is 
possible to reconstruct a state space equivalent to the 
original one. Furthermore, a state-space vector formed 
by time-delayed samples of the observation (in our 
case, the speech samples) could be an appropriate 
choice: 
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where ( )ns  is the speech signal, d is the dimension of 

the state-space vector, T is a time delay and t  means 
transpose.  
 
Finally, the reconstructed state-space vector dynamic, 

( )n1n ss F=+ , can be learned through either local or 

global models, which in turn will be polynomial 
mappings, neural networks, etc. 
 

Considering the reconstructed state-space vector ns  

two questions naturally arise: What should be the 
embedding dimension of the (reconstructed) state-
space vector, d ? And what should be the time delay, 

T ? Most of the researchers who have recently 
proposed nonlinear speech predictors have assumed 

1=T  (following the linear case). Gernot Kubin 
[Kubin 95] was the first, up to our knowledge, to 
suggest that T  should not be equal to 1 and to direct 
the attention of the speech community towards this 
"detail". Moreover, Bernhard and Kubin proposed a 
new method (computationally more efficient than the 
Fraser's one [Fraser 89]) to calculate both the 
dimension and the time delay [Bernhard 94]. 
 
Recently Abarbanel et al. [Abarbanel 98] reviewed the 
state of art concerning the techniques to deal with 
nonlinear deterministic systems. Following their 
exposition, the two first analysis steps intend to choose 
the time delay and the embedding dimension; however, 
in contrast to the already mentioned algorithms by 
Bernhard and Fraser, they suggest to determine them 
sequentially: first, the time delay ("independently" of 
the embedding dimension); and second, the embedding 
dimension. 
 
In this paper we propose to apply the analysis 
techniques described in [Abarbanel 98] to the speech 
prediction problem, trying to learn the speech 
dynamics. Specifically, we use a Radial Basis Function 
(RBF) network [Haykin 99] to implement the 
nonlinear mapping that describes the evolution of the 
reconstructed state-space vector. Furthermore, we have 
conducted some experiments to gain insight into the 
sensibility of the prediction to both T  and d .  
 

LEARNING SPEECH STRUCTURE: A 
DYNAMICAL SYSTEM PERSPECTIVE 



II. DETERMINING THE TIME DELAY AND THE 

EMBEDDING DIMENSION 

 
It follows a brief summary of the methods to determine 
the time delay and the embedding dimension presented 
in [Abarbanel 98]. 
 

A. Average Mutual Information 

 
When seeking the best value for T , the fundamental 
issue is to establish a right balance between a too small 
value (samples in the reconstructed state-vector exhibit 
a lot of common information) and a too large one 
(samples are independent). Abarbanel et al. suggest the 
following prescription: choose the value corresponding 
to the first minimum of the average mutual information 
I : 
 

 

where ( )⋅P  represents a probability which is estimated 

through a histogram.  
 

B. False Nearest Neighbors 

 
Now the issue is to determine the embedding 
dimension. For that purpose, Abarbanel et al. suggest 
the false nearest neighbors algorithm which is based on 
the following reasoning. For any point, we can ask 
whether its nearest neighbor is there due to the 
dynamics itself or is instead projected due to a too 
small reconstructed state-space vector dimension. 
Thus, the algorithm will compute the percentage of 
false nearest neighbors (those that disappear when the 
dimension is increased) for each of the candidate 
dimensions and will decide that the suitable dimension 
will be that for which the percentage of false nearest 
neighbors becomes zero (the dimension is then high 
enough). 
 

III. RBF-BASED SPEECH PREDICTION 

 
We use a RBF network to learn the dynamic of the 
reconstructed state-space vector. The RBF network is a 
single-layer network that computes the formula: 
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where ( ){ }⋅G  are RBF, { }kt are the RBF centers, 

{ }kc are the weights of the linear combination, and 

M  is the number of RBF used. We use Gaussian 
RBF: 
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being σ its variance or width. 
 
We have chosen the RBF network for this task for 
three main reasons: 1) it is a universal approximator; 
2) the computational cost of its training is small 
compared to other types of networks; and 3) it yields a 
regularized solution to the prediction problem. This 
means that we seek a smooth solution, which offers 
good predictions in the regions where training data is 
not available. A compromise exits between smoothness 

and closeness to the data that is controlled through a 
regularization parameter, λ.  
 
Given a training set composed of N pairs 

( )( )1, +nsns , we train the RBF network in two 

stages. First, the centers are obtained through a vector 
quantization algorithm, and the variance is computed 
as the maximum distance between centers. Second the 
output weights are determined as follows: 
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IV. EXPERIMENTS AND RESULTS 

A. Time delay and embedding dimension 

 
It is widely acknowledged [Kubin 95] that unvoiced 
sounds are properly modeled by linear methods, while 
voiced sounds demand a more elaborated nonlinear 
model. For this reason, our experiments have focused 
on sustained vowels. In particular, the experiments 
were made upon utterances of the five Spanish vowels 
(a, e, i, o, u) produced by one male and two female 
speakers, a total of fifteen voiced fragments of speech 
sampled at 8 kHz. For each one, the embedding 
dimension d and time delay T (in samples) were 
calculated as described above. Figure 1 illustrates both 
procedures for a particular case ("af1"). Table I shows 
the achieved results for all of the utternances. 
 

Utterance d T 
af1 7 3 
af2 7 3 
am1 7 3 
ef1 5 5 
ef2 6 5 
em1 14 5 
if1 6 6 
if2 7 10 
im1 7 7 
of1 6 4 
of2 6 4 
om1 8 4 
uf1 6 5 
uf2 6 5 
um1 6 6 

 
Table I. Embedding dimension, d, and time delay, T, 
for each vowel sample (the ‘m’ stands for male and the 
‘f’ for female). 
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Figure 1. a) The first minimum of the average mutual 
information function is chosen as the Time Delay (T=3 
in this case). b) Evolution of the percentage of false 
nearest neighbours as dimension is increased. 
 
 
 
 

B. Prediction experiments 

 
As previously mentioned, we use RBF networks to 
learn the state-space vector dynamic. In particular, the 

RBF networks, with 80=M  centers and 210−=λ , 
were trained over 300 samples in order to recursively 
predict 20 samples ahead; so the training window (300 
samples of length) moves forward 20 samples for each 
20 sample prediction (Figure 2 illustrates the 
procedure). Then the segmental signal-to-noise ratio 
SNRseg (a geometric mean of the SNR computed upon 
every 20 samples) was calculated over 25 frames (a 
period of 500 samples). Modification of the number of 
centers did not produce any significant changes in the 
SNRseg results. Also, an experimental exploration of 
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the values of the regularization parameter λ showed 
that 10-2 was convenient for all the voice samples. 
 
 

 
Figure 2. Training window moving for each 20 sample 
prediction 
 
Our first prediction experiments provided poor results 
due to that the dimension of the state-vector and 
consequently the dimension of the centers was small. 
Specifically, the RBF network works better at a higher 

dimension because the matrix )( 0GGG λ+T , 

inverted during the training process, tends to be better 
conditioned as dimension grows (the probability of 
being a row a linear combination of others decreases). 
Therefore, we will use a dimension d ′ larger than that 
shown in Table I. In particular, we will use dd 4=′ . 

 
 
For the last years, almost every attempt of nonlinear 
speech prediction had always considered 1=T  so 
that the predicted sample was inferred from previous 
consecutive ones. Here a comparison between the 
conventional method ( 1=T ) and the one proposed in 

this paper is presented. Henceforth, cT  and cd  will 

denote the time delay and embedding dimension in the 

conventional method (therefore, 1=cT ); while 

sT and sd  (with ss dd 4=′ ) will denote those shown 

in Table I, i.e., those proposed in this paper. 
 
We have compared both approaches in two ways: 1) 
considering similar computational costs (thus, using 

similar values for cd and sd ′ ); and 2) making both 

predictors to observe the same amount of time memory 

(in this case ssc Tdd ⋅′= ). Results in terms of 

SegSNR (in dB)  are shown in Table II for all of the 
utterances. As can be deduced, the proposed approach 
provides much better results than those achieved by the 
conventional method for similar computation load 
(case I). While the results are comparable when both 
methods predict from the same time interval of the 
evolution of the state-vector (case II); nevertheless, it 
should be noticed that in this case the computational 
load of the conventional method is remarkably 
superior. 
 
Finally, it is worthwhile noting that the results 
achieved for the utterance em1 are especially poor. In 
our opinion, it should be due to that this utterance is 
not predictable 20 samples ahead. 
 

 
 
Table II. SNRseg (dB) results for the proposed 

method ( )ss Td ,′  and the conventional one for both, 

similar computational cost  ( )cssc TTdd ,′= and 

observed memory ( )csc Tdd ,′= . 

 

Vowel Utterance Suggested
Method

( )ss Td ,′

Conventional
Method (I)

( )csc Tdd ,′=

Conventional
Method (II)

( )cssc TTdd ,′=

af1 17.91 15.88 18.11
af2 13.31 9.42 14.05a
am1 16.75 4.46 17.43
ef1 17.34 15.83 20.39
ef2 14.27 13.68 14.66e
em1 1.75 13.86 3.47
if1 16.20 17.98 17.53
if2 15.5 20.43 5.74i
im1 16.13 14.53 18.10
of1 23.45 22.34 24.86
of2 22.11 21.29 23.05o
om1 23.19 14.28 23.77
uf1 26.38 25.53 27.03
uf2 23.31 25.58 23.94u
um1 24.47 18.36 24.48

Mean 18.14 18.44 16.9
Standard deviation 6.14 6.85 5.73



C. Sensibility of prediction to time delay  

 
Since the value of the embedding dimension is fixed 
by the RBF, we have studied the sensibility of the 
nonlinear prediction to the optimal values of T . This 
is a novel initiative that will allow us to know whether 
it could be worthwhile (without considering at this 
stage the computational cost) to choose an ad hoc time 
delay for each particular realization of a sound, or, on 
the contrary, a "mean" value would be acceptable.  
 
We have performed a couple of experiments. First, we 
have selected one utterance, am1, and computed the 

prediction results for sdd ′=  and values of T  

between 2 and 11 (being 3=sT ). Figure 3 displays 

the achieved results. As shown, the best results are 

consistently achieved around 3== sTT , although a 

slightly better spurious result has been obtained for 
7=T . 
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Figure 3. Prediction performance for utterance am1 
and several values of the time delay T . 
 

 
Table III. Time delays for each vowel and the global 
value. 
 
 
 
 

Second, using sdd ′= , we have computed a general 

time delay for each vowel (extracted from the three 
samples of each vowel), hereafter Tvowel, and one 
global time delay (obtained from the whole of the 
vowel set), hereafter Tglobal. To be more precise, each 
set of signals corresponding to a same vowel was 
unified into a single signal by simply juxtaposing the 
utterances of each speaker, and for the new five 
signals, five new values of T were calculated, giving as 

result a time delay T for each vowel, Tvowel. Moreover, 
all the utterances were put together in the same way 
and what could be considered a global value of Tglobal 
was obtained. Once computed this values of T, shown 
in Table III, our experiment consisted in, obtaining the 
prediction error for these general values of T. 
 
 

Table IV. Segmental signal to noise ratios in dB for 
the recursive prediction of 500 samples in steps of 20, 
using three values of T. 
 
Using the three values of T obtained (Ts, Tvowel, and 
Tglobal) RBF networks were trained over 300 samples, 
in order to forecast recursively 20 samples, repeating 
the experiment again over 500 samples. The results are 
shown in Table IV.  
 
 
As it can be inferred from results shown in Table IV, 
the achieved results are not sensitive to the specific 
value computed for each utterance, as long as a close 
value is used (the same conclusion can be drawn from 
Figure 3). 

V. CONCLUSIONS AND FURTHER WORK 

 
We have presented a speech prediction system which 
offers similar performances to that of the conventional 
method but with a much smaller computational cost. 
The new approach consists in predicting from a vector 
of non-consecutive samples, being T the distance 
between samples. The dimension of the vector d and 
the distance T have been estimated following the 
algorithms described by Abarbanel et al. [Abarbanel 
98] 
 
 

Vowel a e i o u All

T 3 5 7 4 6 5

Vowel Utterance Ts Tvowel Tglobal

a af1 17.91 17.97 16.57
af2 13.31 13.30 8.93
am1 16.75 16.71 15.87

e ef1 17.34 20.28 17.36
ef2 14.27 14.20 14.29
em1 1.75 18.30 1.75

i if1 16.20 16.11 18.27
if2 15.5 18.89 14.34
im1 16.13 13.93 17.12

o of1 23.45 24.58 24.35
of2 22.11 23.71 22.14
om1 23.19 23.91 21.10

u uf1 26.38 25.46 26.37
uf2 23.31 24.57 23.34
um1 24.47 24.62 25.48

Mean 18.14 19.77 17.82
Standard deviation 6.14 4.40 6.56



Furthermore, we have studied the sensibility of the 
prediction performance to the value of T, concluding 
that any value of T in the neighbour of the optimal one 
can be used without a relevant loss of performance. 
 
The type of predictor we have used, RBF networks, 
has made us to work with higher embedding 
dimensions than necessary. We are currently working 
on the same ideas using other types of predictors in 
order to circumvent the constraints imposed by the 
RBF networks.  
 
Finally, the next step in our research will focus on 
determining a prediction horizon by studying the 
Lyapunov exponents.  
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